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The contact problem with wear for a thin ring whose pores are filled with viscous com- 
pressible liquid is considered within the scope of the Biot model for a porous elastic 
material. Over its outer surface the ring is joined with a nondeformable housing, and 
over part of its inner surface it is in contact with a shaft rotating around its axis. It 
is assumed that shaft wear is negligibly small compared with that of the bush, inertia ef- 
fects in the ring may be ignored, and friction force is connected with contact pressure 
by Coulomb's law. Explicit asymptotic expansions are obtained for the main characteristics 
of contact interaction (settlement of points of the ring under the shaft, contact angle, 
contact pressure) valid with short and long periods. Ranges of their link-up are estab- 
lished. 

i. We consider a plane (the case of plane strain) contact problem of wear of a thin 
ring (plain bearing bush) with inner radius R and outer radius R 2. Over the outer contour 
the ring is joined with a nondeformable bush, and over part of the inner surface it is in 
contact with a shaft of radius R I = R - A(AR2 -l << i, hR2 -l << i) rotating around its axis 
with constant angular velocity ~ and transmitting to the bush a force F(t) = PH(t), where 
H(t) is Heaviside function (see Fig. i). We assume that shaft wear is negligibly small 
compared with that of the bush, inertia effects in the ring may be ignored, the force of 
friction is connected with contact pressure by Coulomb's law, and as shown in [i] the force 
of friction ~rr which develops in the contact region with values of friction coefficient 
f <- 0.2 has little effect on the rule for distribution of contact pressures and the size 
of the contact angle, and therefore they are not considered in determining radial displace- 
ments of the bush. 

The rheological properties of the ring material will be described by equations of the 
Blot model [2] assuming the movement of a viscous (N is viscosity coefficient) compressible 
liquid in the pores obeys the Darcy filtration rule with a penetration factor k: 
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Here u = {u, v} is the vector of displacements for points of the elastic skeleton; w = 
](U--u) = {U, V} (U is the vector of displacements of points of the liquid and f is poros- 
ity); p is hydrostatic pressure of the liquid in pores; ~ij is stress tensor in a porous 
material; eij is the strain tensor in an elastic skeleton (indices i and j cover i, 2, and 
here 1 corresponds to r and 2 corresponds to ~);~, ~, ~, and M are elastic coefficients 
of a porous material whose physical meaning and methods for finding them are given in [3]. 

The contact conditions between the shaft and the bush as a result of wear of the lat- 
ter are written in the form [i] 
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where u,(R, ~, t) is linear wear of the bush in time t over the direction of the radius 
vector with angular coordinate ~; 7(t) is reciprocating movement of the journal under the 
action of force F(t). In future we shall assume that 0 ~ t < T < ~, and T is such that 
7(t) has the order of displacements in linear elasticity theory. 

In order to determine the elastic displacement of points of a ring u(r, % t) we as- 
sume that its inner surface is permeable, and the outer surface is absolutely impermeable. 
We consider the subsidiary problem of the action of a normal concentrated force PH(t) ap-. 
plied at point ~ = 0, r = R of the bush. Mathematically it is reduced to integrating Eqs. 
(1.1)-(1.4) with boundary conditions [6(~) is Dirac delta-function] 

r = B: p = O, Tr~ = 0 (I~I < n), ~rr = --P6(cp)H(t), (1.6) 

r =  B.z: u ---- v =  Op/Or = O 

and with the initial condition 

In order to s o l v e  (i.i)-(1.4), 

ae = ~-- M-IP (t = 01. (1.7) 

(1.6), (1.7) we introduce two unknown functions E(r, ~, 
t) and S(r, ~, t) connected with displacement vector components in an elastic skeleton 
{u, v} and pressure p by the expressions 
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By i n s e r t i n g  ( 1 . 8 )  in  ( 1 . 4 )  we o b t a i n  
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Now by drawing attention to Eqs. (1.8) and (i.i0) we transform (I.5) and (1.7) to the form 
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We apply to both parts of (1.9), (i.ii), and (1.12) the Laplace-Carson integral trans- 
formation with respect to time 

E = •  s : - -  t 
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and we shall find functions EL(r, q~ s) and SL(r, % s) in representation (1.13) in the 
form 

co oo 

EnL (r, s) = -~t E L cos nT dq~, Sn L (r, s) : --~ 
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By inserting Eqs. (1.13) and (1.14) in Eqs. (1.9) and solving the simple differential equa- 
tions obtained, we find that 

--~n E~ = Ant n @ Bn r-n + CnrTn + Dnr , 

S~ : E~r ~ + F~ -~, ~ = n 2 + ~!c. 

By satisfying the selection of functions An(s), Bn(s), Cn(s), Dn(s), En(s), and Fn(s) 
with boundary conditions (I.ii) written in terms of the Laplace-Carson transformation and 
limiting ourselves to retaining in the solution terms of the order of O(A) (A = hR2 -I ~ i), 
which specify deformation of an elastic skeleton considering that in a thin layer with t = 
0, p= f-IP6(~), we have 
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(v is Poisson's ratio for the skeleton material). 

Moving to the case of a normal load q(@) distributed in section 
(1.15) we find that 

~L(R'~'~)=----~ -~x+% V ~  )q(~) (1~1<=)- 

I~I ~ ~, from equality 

(1.16) 

Whence it follows that a relatively thin porous elastic annulas layer operates in compres- 
sion similar to a Fuss--Winkler viscoelastic base with an operator coefficient of the bed 
whose form may be determined by taking with respect to both parts of (1.16) an inverse 
Laplace-Carson transformation [4]. As a result of this 

u(R, ~, 0--=--- eh q(~) % +  - -  % O, d~ , -~- ,~ --W- 
0 
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[02(x, y) is the theta-function]. 

The solution for an instantaneous load ~rr = -q(~)6(t), applied the section I~I 
of the inner ring surface is found by differentiating (1.17) with respect to t: 

If in expressions (1.18) tm -l ~ ~, then 

�9 -__ [ __ ( ~ U  u (R, ~, t) = eh q (9) [c15 (t) + 2% exp t - -  ~)J  
~t m 

W i t h  tm -1  + 0 t a k i n g  a c c o u n t  o f  t h e  f a c t  t h a t  

~c (R, 9, s) ~ - - - 7  ci + q (9), 

we obtain [4] 

<_ (i 

(i.18) 

(1.19) 

u(/L % t ) = - - - ~ - q ( ~ )  c1~(t) 4- �9 ( 1 . 2 0 )  

We a s s u m e  t h a t  b u s h  w e a r  h a s  an  a b r a s i v e  n a t u r e  [ 5 ] .  Then i t s  w e a r  r a t e  i s  p r o p o r -  
t i o n a l  to the work of friction force and in the case of ~rr = -q(~P) it takes the form 

[%(R, % t )~ - - lR fq ( (~  ) I~ -1.  ( 1 . 2 1 )  

H e r e  1 i s  a c o n s t a n t  w h i c h  c h a r a c t e r i z e s  r i n g  m a t e r i a l  w e a r  r e s i s t a n c e ,  c o n d i t i o n s  f o r  
o p e r a t i o n  o f  t h e  s h a f t - b u s h  p a i r ,  and  d e p e n d s  on  t h e  c o m b i n a t i o n  o f  w e a r i n g  s u r f a c e s .  

2 .  Knowing  f u n c t i o n s  u ( R ,  9, t )  and  u , ( R ,  9, t )  ( 1 . 1 8 ) - ( ' 1 . 2 1 ) ,  we s t u d y  t h e  c o n -  
t a c t  p r o b l e m  s t a t e d  i n  P a r t  1. S i n c e  w i t h  t h e  p a s s a g e  o f  t i m e  t h e  c o n t a c t  a r e a  o f  t h e  
journal with the bearing 2a(t) increases uniformly, then there exists a function t = ~(a) 
inverse to a = a(t), and its uniqueness makes it possible to use a(t) as a provisional 
parameter. Using contact condition (1.5) and denoting 

t*--~tm--1, A*-~-AR2 -I, b:c2c-11, ? * ( t * ) = ? [ a ( t ) l R z  "t, q*(9, t * ) =  

: q [9, a (t)] ~t -1, eAc 1 : a, l* := lm (ab) -1, N = P (,aRf)-i 

( t h e  a s t e r i s k  i s  o m i t t e d  b e l o w ) ,  we o b t a i n  an  i n t e g r a l  e q u a t i o n  f o r  t h e  p r o b l e m  o f  r e l a -  
t i v e l y  unknown c o n t a c t  p r e s s u r e  q ( ~ ,  t )  i n  t h e  f o r m  

a q(% t ) + b  q((p, '~)k(t--T)dT = [ A ~ - y ( t ) l c o s T - - A  ( 0 < ~ T < a ( t ) ,  
0 

0~< t ~ < T <  oo), ( 2 . 1 )  

where the kernel k(t - T) gives one of the equations 

k(t) --  l =  02(O,t), 2exp(--~2t/4),(~t)-I/2 ( 2 . 2 )  

f o r  v e r s i o n s  ( 1 . 1 8 ) - ( 1 . 2 0 ) ,  r e s p e c t i v e l y .  To E q s .  ( 2 . 1 )  a n d  ( 2 . 2 )  i t  i s  n e c e s s a r y  t o  a d d  
the quasistatic condition 

a(t) 

N = 2 y q (9, t) cos ~d% ( 2 . 3 )  
0 

and also the equality 

q(% t)=0 (~, (2.4) 

which serves for determining the unknown contact zone of the shaft and the bush. 

It is noted that relationship (2.4) makes it possible to write integral Eq. (2.1) in 
the form of the system 

817 



TABLE 1 

t act) t r 

0 
0,05 
0,t 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 

0,998 
1,053 
t ,073 
1,098 
t , t t 6  
t,129 
t , t39 
t,t47 
1,t53 

0,998 
t ,053 
t,073 
1,099 
t,1t7 
1,t3t 
t ,t43 
1,154 
1,t63 

0,998 
t,021 
t ,039 
1,067 
t,088 
t , t02 
1,t13 
t,122 
1,129 

0 , 8  
0,9  
1 ' 
2 
3 
4 , 
5 

t0 
oo 

t , t58 
1,162 
1,t65 
1,t82 
1,t93 
1,202 
t,21t 
1,249 
1,571 

I 

t,17t t,t35 
1 , t 7 9  I t , t39 
t , t86 t , t43 
1,234 I t,163 
t,265 t,174 
1,288 t , t84 
t,306 t,194 
t,361 I 1,23) 
t , 5 7 t ]  t,57t 

I 

a q(q),  t ) - ] - b  q ( %  %) k (t - -  T) d% ---- [A -~ ? (t)]  cos  q) - -  A 

~P(r 
(~ (r ~< t < T< ~), 

o (o < r ~< %), 
~p(r ~(r (%<(P<~=), %=c~(o), (2.5) 

for which an algorithm given in [6, 7] is used for the solution. 

From (2.5) by means of (2.4) we find that 

"~(t) = A[t - -  cos a(t)] cos -1 co(t). ( 2 . 6 )  

We multiply both parts of (2.1) by cos ~ and we integrate within the limits from 0 to 
a(t). Drawing attention to Eqs. (2.2), (2.3), and (2.6) and changing the order of integra- 
tion, which is correct [8] in the case of a monotonically increasing contact region, we 
have 

h a - -  (1/2) sin 2r t 
abN cos a T ~ It = 

2 ~ ,  e--~2(n+l/2) 2t 
i -- -~ (n + 1/2) 2 ' 

~t=0 

2 V -i- (t-+O), 

~(1-0-=~ ' - )  (,-~ oo). 

(2.7) 

The last expressions are transcendental equations for determining the contact angle 
of the journal and the bearing, respectively, with 0 -< t <- T < ~, T l _< t <_ T, and'0 5- t <_ 
T o . In particular, it follows from (2.7) that with quite a long period ~(t) + ~/2. 

A solution for set of integral Eqs. (2.5) with T l ~ t <- T may be obtained by the method 
in [6, 7]: 

A [cos  q~-- cos c~(t) t n~(__t)npnX 
q ( %  t ) = ' T  ' coso~(t) + P l - - P 2  = 

x p,~ - T / 3  ~ ~ ~ dr (0 ~< qD ~< %), 

2 

a (Px -- P2) (-- i)n Pn Pn -- X 

n=l 

t 

y cos (p - -  cos ~(~) e-p~(t-~)d~ (% < ~ < ~ (t)), 
x cos ~ (~) 

[3(~) 

1,2 - -  - ~ -  +---~'-'~ l + 2 b + - T )  

818 



and function B(~) in Eqs. (2.8) satisfies the equation 

qb - -  ~ - -  l ~  : I ~ q) (q)) : a b N  cos q) ( % <  $ < a ) .  ( 2 . 9 )  

With 0 _< t _< T o the solution of system (2.5) may be constructed by means of an in- 
tegral Laplace-Carson transformation with respect to time. Omitting the mathematical com- 

putation we write 

A {cos~--cosa(t) t ~ 
(% t) = -7- cos zr (t) q s~ (-- 1) ~ X 

x , .  - ~ a - ~ 7  ,~;'<'-~'~rfo (,n ]/~(_. ) d~ (o < ~ < %), 
0 

2 f 
A ~ 2 f cosq3--eosos(,) 

q (% t) - a ( q  - -  sz) ( -  t)'~ s~ cos  a (1:) X 
n=l l~C~) 

V ~  

b 1 / $  = ~ ( . - t / b ) :  
.~1,:---.-~-$- --/b, 13(m) l t+_~/1 .~/ , (q)_t lb) la .  (2.1o) 

Here erfc(x) = i - erf(x); erf(x) is probability integral. 

Thus, Eqs. (2.6)-(2.10) give a solution of the stated problem for wear of a plain bear- 
ing with a porous lining with T I ~ t ~ T and 0 ~ t ~ T o . We clarify the question of whether 
the equations for short and long periods obtained link up together, i.e., whether the condi- 
tion T I ~ T o is fulfilled? 

For example, we assume in relationships (2.7) that &(aN) -l = i, b = i, i = 0.I. Val- 
ues of ~(t) found from Eqs. (2.7) (t § 0 is the second column, t + ~ is the third column) 
with different values of 0 ~ t < ~ are given in Table i. It can be seen that the asymptotic 
for a short period operates almost to t = T o = 1 (the error in this solution compared with 
the accurate solution given in the first column with t = T o does not exceed 1.8%). At the 
same time, the asymptotic solution with t + ~ may be used when t = T I e 0.8 (the maximum 
error of the results is not more than 2%). 
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